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Abstract

In this work, we introduce Minimum Semblance as
an alternative method to calculate the coherence
of seismic events. Minimum semblance is a
small modification of conventional semblance, the
purpose of which is to increase the resolution of
semblance sections. The idea is to utilize the
time window used in conventional semblance to find
the minimum semblance value of all parallel curves
instead of summing in time. The computational
cost of minimum semblance is comparable to that
of conventional semblance and significantly lower
than that of weighted or AB semblance. We apply
minimum semblance to stacking-velocity analysis and
compare its behaviour to these other coherence
measures. Our results show that minimum semblance
increases resolution. For field data, our approach
presented comparable results to AB semblance in
that the resulting NMO correction shows similarly well
flattened events.

Introduction

Since the famous work of Taner and Koehler (1969),
semblance has been a reliable measure of coherence in
seismic processing. As a coherence measure, semblance
is mostly used to detect events in noisy multiple-coverage
data. Semblance is known to depend in various degrees
on operator size (aperture and window length) and noise
level (Douze and Laster, 1979). Furthermore, it supposes
white-noise data contamination and constant amplitude
along reflection curve. Therefore, this function can show
unpredictable behaviour if the noise is colored. For this
reason, many attempts have been made to find a more
stable measure which has less dependence on the type
of noise or the choice of parameters used in the analysis.
Conventional semblance has been the best coherence
measure in virtually all attempts, because it is robust and
easy to calculate in almost all situations. However, there
are specific cases where other measures may be more
advantageous.

Weighted Semblance (Luo and Hale, 2012) is a direct
extension of the conventional measure. It uses a
weighting function chosen to emphasize terms that are
more sensitive to changes in velocity, resulting in increased
resolution of the semblance section. Counterintuitively,

resolution increases when choosing an offset-dependent
weighting function that minimizes semblance. AB
Semblance, introduced by Sarkar et al. (2001, 2002)
and implemented by Fomel (2009) is interpreted as
a correlation measure with an amplitude trend and is
particularly attractive for data presenting polarity reversal.

Inspired by Weighted Semblance, we apply the
minimization idea to conventional semblance. The
resulting Minimum Semblance increases the resolution
of the latter, while preserving its advantages, including
robustness and low computational cost. The main goal
of this work is to analyze and compare the different
semblances functions in common midpoint (CMP) sections
in order to determine which measure provides the best
velocity spectra. Synthetic and field data were used for
this purpose.

Method

Conventional Semblance is a quantitative coherence
measure introduced by Taner and Koehler (1969) given by
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where ui, j denotes the data sample at time index j and
trace number i. The inner summation over i corresponds
to N traces and the outer summation corresponds to
a time window with length 2M + 1. To introduce the
minimum semblance, we disregard the time window (M =
0), resulting in
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We then define Minimum Semblance as the minimum value
of this measure inside the original time window, i.e.,

Smin = min{S j, j = 1, . . . ,2M+1}. (3)

Procedure

For velocity analysis in a CMP section, the coherence
value is supposed to reflect how well the hyperbolic curve
corresponding to the selected value of the stacking velocity
fits the curve of the signal in the data. A good fit must
produce a peak in the semblance section, while a bad fit
must produces significantly lower coherence values.

For the Minimum Semblance, we compute the semblance
measure S j for an adequate time window M. For instance,
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if M = 1 then we calculate semblance values S−1, S0 and
S1 for times t0 − dt, t0 and t0 + dt, where dt is the time
sample. Once we have values S j associated to all of these
times, we select the minimum value to define the Minimum
Semblance. For an appropriate size of time window, the
semblance results will not be very different from each other
for neighbouring traveltime samples. If the test curves
fall inside a coherent event, the smallest value Smin is still
expected to be relatively high. On the other hand, if the
test curves fall outside a coherent event, at least one of the
calculates values for S j should be rather small, even if there
is some random correlation between the traces. In this way,
the minimization criterion is expected to lead to increased
resolution as compared to Conventional Semblance, which
would sum over such incidental correlations.

In contrast, choosing the maximum instead of the minimum
value can be expected to do not much good for already
high coherence values, but might strongly increase the
coherence measure outside seismic events because of
random correlations at some t0.

The modification of the calculation of Minimum Semblance
as compared to Conventional Semblance is rather
small. For this reason, it has approximately the same
computational cost. This is an advantage over Weighted
and AB semblance, which present significantly higher
computational costs. While this might not be relevant for a
conventional velocity analysis, it can become a prohibitive
factor in other applications of semblance analysis such as,
e.g., the common-reflection-surface (CRS) method.

To evaluate the behaviour of Minimum Semblance, we
compared CMP velocity analysis results to those obtained
with other semblance approaches.

Numerical experiments

Our first numerical tests consisted of a synthetic CMP
section. Then we applied the semblance functions to a field
data set.

Synthetic Data

Figure 1 shows a synthetic CMP section generated from
a model using RMS velocities of 1.5, 2.0, 3.0, 2.5, 2.0, 2.5
and 3.0 km/s and times t0 0.5, 1.0, 1.5, 2.0, 2.5, 3.0 and 3.5
s, respectively. Time sampling is 4 ms. To these data with
constant event amplitudes, we added random white noise
at 40 % of the maximum amplitude.

On these data, we performed a stacking-velocity analysis.
The resulting velocity spectra obtained with conventional,
weighted and minimum semblances with a window size
of 5 samples are depicted in Figure 2. Color scale
indicates the minimum value (blue) and the maximum
value (red) of semblances. Semblance values vary
between 0 and 1. Note that the minimum semblance
section resolution increased compared to conventional and
weighted semblances. Minimum semblance provides a
smaller number of red spots where there is high coherence
than in the other spectra. This fact is favorable for picking
the stacking velocity value. AB semblance is not exhibited
because its results are almost indistinguishable from the
conventional ones in this case, where the events do not
present amplitude variations.

We extracted the stacking velocities for the interpretable

events from these velocity spectra. Figure 3 exhibits
the extracted velocities and compares them to the exact
velocities (black ◦) for this example. We can verify that
all semblance provide mostly velocities that are acceptably
close to the exact ones. Weighted semblance (blue ∗)
produces a strong error for the event at t0 = 0.5 s. Minimum
Semblance (red ×) results in one slightly larger error for the
event at t0 = 1.5 s, which is probably due to the conflicting
dips. All other velocities almost cover the black circles that
indicate the exact ones.

For a more detailed analysis, we have calculated the
absolute errors for these velocity values (see Figure 4).
We notice that the stacking velocity resulting from minimum
semblance has the smallest error at five of the seven
events. Conventional semblance produces the smallest
error at two events, one of which is equaled by weighted
semblance.
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Figure 1: Noise-free synthetic CMP section.

Field Data

Figure 5 is a field-data CMP section with 4 ms
time sampling. Figures 6 show the velocity spectra
obtained with conventional, minimum, weighted and AB
semblances, respectively, with a window size of one
sample. To study the effectiveness of the functions in real
data, we applied an NMO correction to the CMP section
using the picked velocities obtained by each measure.
The best flattening among the functions will indicate
which one is the best for this set of CMP data. The
NMO-corrected sections with the picked stacking velocities
obtained with conventional, minimum, weighted and AB
semblances are shown in Figure 7. Notice that for the
event at time 2.5 s, AB and Minimum-Semblance results
provide better event flattening than those from conventional
and weighted semblances. Although the results are
comparable, minimum semblance has lower computacional
cost than AB semblance.
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Figure 2: Velocity spectra with (a) Conventional, (b) Weighted, (c) Minimum Semblance.

0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

t
0
 [s]

V
e
lo

c
it
y
 [
k
m

/s
]

Figure 3: Picked RMS velocities for conventional (magenta
4), weighted (blue ∗), and minimum (red ×) semblances,
and comparison with the exact values (black ◦).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.5

1

1.5

2

2.5

3

3.5

4

half−offset [km]

t [
s]

Figure 5: CMP section for field data.
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Figure 4: Absolute velocity error for conventional (magenta
4), weighted (blue ∗), and minimum (red ×) semblances in
deviation from the exact values.

Conclusions

The Minimum Semblance introduced in this work is a
similar coherence measure to conventional semblance.
The time window is used to find the minimum semblance
value along all parallel curves instead of determining a
kind of average over these curves. It has the same
computational cost as conventional semblance. In our
numerical tests for stacking-velocity analysis in synthetic
and real CMP sections, it provided better resolution in the
velocity spectra and allowed in many cases to pick superior
velocity values.
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Figure 6: Velocity spectra of the real data obtained with (a) conventional, (b) minimum, (c) weighted and (d) AB semblance.
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Figure 7: NMO correction applied to CMP section for velocities obtained by (a) conventional semblance, (b) minimum
semblance, (c) weighted semblance and (d) AB semblance.
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